Кпд блоков питания компьютера. Выбираем блок питания для компьютера

Немаловажным критерием будет и КПД блока питания. Коэффициент полезного действия (КПД) - отношение полезной мощности, выдаваемой блоком питания, к потребляемой им от сети. Если схема блока питания ПКсодержала бы лишь трансформатор, его КПД был бы около 100%.

Рассмотрим пример, когда блок питания (с известным КПД - 80%) обеспечивает на выходе мощность в 400W. Если это число (400) разделить на 80% - получим 500W. А блок питания с теми же характеристиками, но с меньшим КПД (70%), будет потреблять уже 570W.

Но – не надо воспринимать эти цифры «всерьез». Блок питания большую часть времени – нагружен не полностью, например, это значение может быть 200W (потреблять от сети компьютер будет меньше).

Существует организация, в функции которой входит тест блоков питания на соответствие уровню заявленного стандарта КПД. Сертификация 80 Plus, при этом, проводится только для сетей на 115 Вольт (распространенных в США), начиная же с «класса» 80 Plus Bronze, все блоки тестируются для использования в 220В-электросети. Например, если сертификация пройдена в классе 80 Plus Bronze, КПД блока питания составляет 85% при «половинной» загрузке по мощности, и 81% - при заявленной мощности.

Наличие логотипа на блоке питания говорит, что товар соответствует уровню сертификации.

Плюсы высокого КПД: меньше энергии отводится «в виде тепла», и система охлаждения, соответственно, будет менее шумной. Во-вторых – очевидна экономия электричества (хотя и, не очень большая). Качество у «сертифицированных» БП, как правило, высокое.

Активный или пассивный pfc?

Power Factor Correction (PFC) – коррекция коэффициента мощности. Power Factor - отношение активной мощности к полной (активной плюс реактивной).

Нагрузкой же, реактивная мощность не потребляется – она на 100% отдается обратно в сеть, на следующем полупериоде. Однако, с ростом реактивной мощности, растет максимальное (за период) значение силы тока.

Слишком большая сила тока в проводах 220В – хорошо ли это? Наверное, нет. Поэтому, с реактивной мощностью по возможности борются (особенно это актуально для действительно мощных устройств, «переходящих» предел в 300-400 Ватт).

PFC – может быть пассивным или активным.

Преимущества активного метода:

Обеспечивается близкий к идеальному значению Power Factor (коэффициент мощности), вплоть до значения, близкого к 1. При PF=1, сила тока в проводе 220В не превысит значение «мощность делить на 220» (в случае меньших значений PF, сила тока – всегда несколько больше).

Недостатки активного PFC:

Повышается сложность – снижается общая надежность блока питания. Самой системе активного PFC - требуется охлаждение. Кроме того, не рекомендуют использовать системы активной коррекции с автовольтажем совместно с источниками ИБП (UPS).

Преимущества пассивной PFC:

Отсутствуют недостатки активного метода.

Недостатки:

Система – малоэффективна при больших значениях мощности.

Что именно выбрать? В любом случае, приобретая БП меньшей мощности (до 400-450W), в нем чаще всего вы обнаружите PFC пассивной системы, а более мощные блоки, от 600 W – чаще встречаются с активной коррекцией.

ОХЛАЖДЕНИЕ БЛОКА ПИТАНИЯ

Системный блок предусматривает установку БП вверху корпуса – тогда, выбирайте любую модель с горизонтально расположенным вентилятором. Больше диаметр – меньше шум (c одинаковой мощностью охлаждения).

Скорость вращения должна меняться в зависимости от внутренней температуры. Когда БП не перегревается – зачем нужно крутить «вентиль» на всех оборотах, и досаждать пользователю шумом? Существуют модели БП, полностью останавливающие свой вентилятор при потребляемой мощности менее 1/3 расчетной. Что - удобно.

Главное в системе охлаждения БП – это ее тишина (или – полное отсутствие вентилятора, такое тоже встречается). С другой стороны, охлаждение нужно затем, чтобы не допустить перегрева деталей (высокая мощность, в любом случае, влечет тепловыделение). На больших мощностях, без вентилятора – не обойтись.

Примечание: на фото – результат моддинга (удаление стандартной решетки-прорези, установка вентилятора Noktua и гриля 120 мм).

Здравствуйте Друзья! В статье о , мы немного коснулись темы как выбрать блок питания компьютера . В этой попробуем разобраться во внутреннем устройстве, принципе работы и разнообразии разъемов блока питания. Так же расскажем о таком важном параметре как коэффициент полезного действия КПД. Приведем расчет необходимой мощности блока питания и вы без труда сделаете свой выбор для любого компьютера.

3.3 V Sense (Коричневый) — контакт предназначенный для обратной связи. С помощью него блок питания регулирует напряжение +3.3 V.

5 V (Белый) — в современных блоках питания не используется и исключен из 24-х контактного разъема. Использовался для обратной совместимости шины ISA.

Power ON (Зеленый) — контакт позволяющий современным операционным системам управлять блоком питания. При выключении компьютера через меню «Пуск» система с Power ON отключит блок питания. Системы без контакта Power ON способны лишь вывести сообщение, что компьютер можно выключить.

Power good (Серый) — имеет напряжение +5 V и может колебаться в допустимых пределах от +2,4 V до +6 V. При нажатии на кнопку POWER (включение компьютера) блок питания включается и производит самотестирование и стабилизацию напряжений на выходе +3.3 V, +5 V и +12 V. Этот процесс занимает 0,1-0,5 с. После чего блок питания посылает материнской плате сигнал Power good. Этот сигнал принимает чип управления питанием и запускает последний. При скачках или пропадании напряжения на входе блока питания материнская плата не получает сигнал Power good и останавливает процессор. При возобновлении питания на входе так же восстанавливается сигнал Power good и происходит запуск системы. Таким образом, благодаря сигналу Power good, компьютер гарантировано получит только качественное питание, что в свою очередь позволяет повысить надежность и работоспособность всей системы.

Питание процессора . Питание осуществляется через устройство называемое Voltage Regulator Module (VRM). Модуль преобразует напряжение с +12 V до необходимого процессору и имеет коэффициент полезного действия (КПД) около 80%. Изначально, когда процессоры потребляли минимум энергии и питались от +5 V, достаточно было питания через материнскую плату. Было всего 12 контактов (2 по 6). С ростом производительности выросла и потребляемая мощность. Современные процессоры потребляют до 130 Вт и это без разгона. Задача стояла следующая, обеспечить питание процессора не расплавив при этом контакты на материнской плате. Для этого перешли с +5 V на +12 V, т.к. это дало возможность снизить ток более чем на 50% сохраняя мощность. Через один контакт +12 V на материнской плате можно было передавать до 6 А (2-ая линия +12 V питает слоты PCI-E). Решение было позаимствовано как обычно из серверного сегмента. Для процессора сделали отдельный разъем напрямую от блока питания.

Разъем состоял из 4-х контактов 2-ва +12 V и 2 — земля. По спецификации имелась возможность подачи до 8 А на контакт.

Для топовых процессоров использовалось несколько VRM модулей. Что бы лучше распределить нагрузку между ними было принято решение использовать два 4-х контактных разъема объединенных физически в один 8-ми контактный

Как видно из рисунка выше разъем содержит 4 линии +12 V, что обеспечивает стабильным питанием самые мощные процессоры. Разъем может быть разделен на 2 по 4 контакта.

Так же стоит отметить что особо мощные блоки питания (мне попадались от 1000 Вт и выше) имеют два 8-ми контактных разъема. Вероятно для питания систем включающих два процессора

Питание графического адаптера . 24-х контактный разъем питания материнской платы обеспечивает 75 Вт для слота PCI-E. Этого хватаем лишь для начального уровня. Для более продвинутых решений используется дополнительный 6-ти контактный разъем

Этот разъем подводит дополнительно 75 Вт и в результате 150 Вт для графического адаптера.

В 2008 году ввели 8-ми контактный разъем питания видеокарт

Сие обеспечивает дополнительно 150 Вт, что в сумме дает 225 Вт. Оба разъема обратно совместимы. Это значит, что 6-ти контактный разъем питания можно подключить к 8-ми контактному на графическом адаптере сдвинув его в сторону. И наоборот 8-ми контактный разъем блока питания компьютера можно подключить к 6-ти контактному на графическом адаптере. Конструкция разъема исключает некорректное подключение.

Кроме линий +12 V и земли на обоих разъемах присутствуют контакты Sense. Графический адаптер использует их для определения какой (6-ти или 8-ми контактный) разъем подключен к видеоадаптеру и подключен ли вообще разъем. Если разъем не подключен система на запустится. Если вместо 8-ми контактного разъема подключен 6-ти контактный в зависимости от прошивки графической карты система может не запуститься вообще либо запуститься с ограниченной функциональностью

8-ми контактный разъем питания графического адаптера и 8-ми контактное питание процессора имеют разные ключи (защита от дурака) благодаря чему вы не имеете возможности подключить разъемы не корректно. Так же эти разъемы по разному разделены: для питания графического адаптера 6+2, для питания процессора 4+4 или слитно 8 контактов.

В некоторых блоках питания разъемы PCI-E, для лучшей идентификации, маркируются наклейкой с надписью «PCI-Express»

Важно! Все разъемы блока питания подключаются без особого усилия!

У графических адаптеров среднего и высшего ценового сегмента присутствуют сразу два разъема. В зависимости от мощности: 2х6, 1х6 и 1х8, 2х8.

Бывают случаи когда блок питания не имеет достаточно разъемов питания PCI-E. В таких ситуациях используют Y-образные переходники

Переходник использует два «молекcа» для подключения периферии, т.к. необходимо две линии +12 V для одного 6-ти контактного разъема.

При подключении графического адаптера через переходник убедитесь что линия +12 V выдержит. То есть, найдите в обзорах или на официальном сайте информацию по энергопотреблению видеокарты. После посмотрите характеристику блока питания (на наклейке БП или на сайте производителе) по линии +12 V

Сложите максимальную мощность и TDP , полученную сумму я умножаю на 1.5 и сравниваю с цифрой в характеристике блока питания. Если полученное значение мощности больше приведенного в характеристике, то возможны проблемы, если меньше — можно пробовать. Если же у вас современный блок питания и цифра получается впритык или даже чуть меньше чем в характеристике, то можно пробовать видеокарту в своих приложениях. Маловероятно, что вы загрузите ее на 100%. Если же у вас старый блок питания , лучше не рисковать.

Питание периферийных устройств . Практически все периферийные устройства питаются от следующий разъемов:

  • питание периферийных устройств
  • питание флоппи-дисковода
  • питание Serial ATA

Питание периферийный устройств . Обычно называется Molex так как производится фирмой с одноименным названием

Имеет 4 контакта: +5 V, +12 V и 2 земля. Рассчитан на ток 11 А на контакт. Используется для подключения старых , оптических приводов, вентиляторов и других устройств использующих питание +5 V или +12 V

Конструкция вилки предусматривает ключи (срезанные углы) препятствующие некорректному подключению периферийный устройств. Некоторые производители (Sirtec в частности) изготавливают данный разъем со специальными полукруглыми приспособлениями для более легкого отсоединения от устройств.

Питание флоппи-дисковода . Питание менее мощных периферийных устройств. Имеет так же 4 контакта. Расстояние между контактами, по сравнению с предыдущим разъемом уменьшено в 2 раза и составляет 2.5 мм

Каждый контакт рассчитан на ток 2 А, что определят максимальную мощность разъема в 34 Вт

В отличии от вилки для питания периферийных устройств в этом контакты +5 V и +12 V перевернуты. Флоппи-дисковод можно подключать «на ходу». Для этого сначала необходимо подключить кабель данных, а затем кабель питания. Отключение происходит в обратной последовательности. Убедитесь, что не используете FDD-дисковод, отключите питание затем шнур данных. Вилка флоппи-дисковода содержит ключ для корректного подключения, но при соединении необходимо быть внимательным (особенно на «ходу»), можно легко сместить контакты при подключении.

Питание Serial ATA . Все современные накопители как так и подключаются этим разъемом

Это 15 контактная вилка для подключения периферии где на каждую линию питания приходится по 3 контакта

Обеспечивает такую же мощность как и стандартный разъем для периферии. Так же на одной стороне присутствует ключ препятствующий некорректному подключению. Для устаревших блоков питания применяются переходники следующего типа, позволяющие подключить одно или два устройства SATA

В переходниках отсутствует линия питания +3.3 V, т. к. современные HDD и SSD ее не используют.

Коэффициент полезного действия — КПД блоков питания

Любое устройство питающееся от сети переменного тока имеет свой коэффициент полезного действия (КПД). Блоки питания компьютера не исключение. КПД — это то количество энергии которое выполняет полезную функцию (питание компьютера). Все остальное преобразуется в тепло. На данный момент существуют уровни эффективности представленные в таблице ниже

Преимущества высокого КПД блока питания:

  • меньшее потребление энергии в сравнении с блоком питания без соответствующей сертификации. Например блок питания 500 Вт с сертификацией 80 Plus Gold (КПД 90%) и без сертификации (КПД порядка 75%). При нагрузке в 50% (250 Вт) сертифицированный блок питания будет расходовать от сети 277 Вт, не сертифицированный — 333 Вт.
  • меньший нагрев так как значительно меньше тепла необходимо рассеять
  • более продолжительный срок работы блока питания за счет более низких температур
  • меньше шум, так как для отвода небольшого количества тепла требуется вентилятор работающий на более низких оборотах
  • более качественное питание для комплектующих, следовательно более надежная и стабильная работа всего компьютера
  • минимальное искажение характеристик сети питания. Каждое устройство питающееся от сети переменного тока вносит свои помехи. В сертифицированных блоках питания применяется специальное устройство APFC (Active Power Factor Correction) повышающее КПД и практически исключающее помехи от блока питания компьютера .

Недостаток один — цена, с лихвой компенсируется преимуществами.

Внутреннее устройство и принцип работы источников питания для компьютера

Коротко опишем принцип работы компьютерного блока питания

На вход подается питание 220 V / 50 Гц (в идеальном случае). В противном случае работает фильтр (1) который убирает пульсации и помехи сети. После питание подается на инвертор сетевого напряжения (2), который увеличивает частоту с 50 Гц до 100 Кгц и выше. Благодаря чему имеется возможность использовать дешевые трансформаторы (3) малых габаритов. Этот трансформатор благодаря высокой частоте может передать огромную мощность при преобразовании высоковольтного напряжения в низковольтное. Рядом с основным трансформатором располагается так же трансформатор дежурного напряжения. Последнее присутствует всегда при подаче питания к блоку. Далее в работу вступают диодные сборки (5), которые вместе с конденсаторами и дросселями сглаживают высокочастотные пульсации и выдают постоянные напряжения подающиеся непосредственно компонентам компьютера.

Основной дроссель групповой стабилизации (6). Применяется в блоках питания среднего ценового диапазона и отвечает за стабилизацию всех выходных напряжений. Если нагрузка на одном из каналов резко увеличивается — напряжение проседает. При такой схеме блок питания повышает напряжения сразу на всех линиях. Качественные, дорогие блоки питания, имеют полностью независимые линии питания, благодаря чему этого эффекта не возникает.

Схема управления частотой вращения вентилятора (7). Позволяет регулировать обороты «карлсона». Так же присутствует плата контроля напряжения и потребляемого тока. Она отвечает за защиту блока от коротких замыканий и перегрузки.

Блоки питания высокого уровня преимущественно изготавливают с модульным подключением кабелей. В этом случае присутствует плата с силовыми разъемами (8) куда непосредственно подключаются провода.

Модульное подключение позволяет использовать только необходимые кабеля. В следствии чего возможно добиться более качественного распределения кабелей в корпусе, что в свою очередь положительно скажется на

  • Модуль памяти — 5 Вт
  • HDD и оптический привод — 15 — 20 Вт
  • SSD — менее 10 Вт
  • вентилятор — от 0,5 до 5 Вт
  • графический адаптер — необходимо смотреть в спецификациях
  • Для систем со встроенным, в процессор, видео хватит блока питания 400-500 Вт. Точнее хватит и 250 Вт, но лучше взять с запасом.

    Как и где смотреть приблизительное энергопотребление процессора. Заходим на официальный сайт фирмы производителя, находим свой продукт и смотрим характеристики. Нас интересует поле Max. TDP. Эту цифру принимаю за энергопотребление процессора при расчете.

    С графическими адаптерами проще. Так же заходим на официальный сайт производителя графических чипов, ищем свой продукт. Открываем вкладку спецификация и если это видеокарта фирмы nvidia, то в разделе «Мощность и температура» находим показатели потребления карты и рекомендации по мощности блока питания. У конкурента потребление карты не нашел, необходимо прочитать обзор, но так же есть рекомендации по необходимой мощности блока питания.

    При сборе систем с несколькими следует точно знать сколько максимально потребляет данная модель. Данную цифру умножить на количество графических адаптеров в системе, добавить потребление процессора и других устройств. Полученную сумму умножить на 2 и получится мощность рекомендуемого блока питания с приличным запасом. Почему рекомендуют выбирать мощность блока питания с запасом? Потому что, если в одной комнате будет стоять несколько компьютеров с одинаковыми комплектующими, но с различными по мощности блоками питания и параметры питания будут оставлять желать лучшего. При таком раскладе стабильнее будут системы с более мощными блоками питания .

    Вывод

    В данной статье мы разобрались в характеристиках блока питания компьютера. Подробно разобрали разъемы с помощью которых питаются все комплектующие системы. Разъемы имеют определенные ключи «защита от дурака» и не прикладывая слишком много «ньютонов» при сборке, вы корректно соберете систему. Так же мы поверхностно прошлись по внутреннему строению и принципу работы блока питания компьютера . Узнали, что благодаря повышению частоты с 50 Гц до 100 Кгц и выше удается разместить все компоненты блока в скромных габаритах, без потери мощности. Было рассказано о сертификации блока питания и коэффициенте полезного действия КПД. Рассмотрели положительные и отрицательные стороны высокой эффективности. Это не только меньшие счета за электричество, которые за 3-4 года сведет разницу в стоимости к нулю, но и более стабильная и надежная работа вашего компьютера.

    P.S. Выбирайте блок питания для вашего компьютера с запасом по мощности в 1.5 — 2 раза и как можно более высокого стандарта сертификации. Это гарантирует вашему персональному компьютеру качественное и стабильное питание.

    С удовольствием отвечу на вопросы в комментариях. Благодарю, что поделились статьей в социальных сетях. Всего Вам Доброго!

    Блок питания - "сердце" электроснабжения компонентов компьютера. Он преобразует входящее переменное напряжение в постоянный ток напряжением +3,3 В, +5 В, +12 В.

    1. Блок питания компьютера, его разъёмы и напряжения
    2. Расчёт мощности
    3. Основные характеристики блоков питания

    Блок питания компьютера, его разъёмы и напряжения

    Компоненты компьютера используют следующие напряжения:

    3,3В - Материнская плата, модули памяти, платы PCI, AGP, PCI-E, контроллеры

    5В - Дисковые накопители, приводы, PCI, AGP, ISA

    12В - Приводы, карты AGP, PCI-E

    Как видно одни и те же компоненты могут использовать разные напряжения.

    Функция PS_ON позволяет выключить и включить блок питания программно. Эта функция выключает блок питания когда операционная система завершит свою работу.

    Сигнал Power_Good. При включении компьютера блок питания проводит самотестирование. И если выходные напряжения питания в норме он посылает сигнал на материнскую плату в чип управления питанием процессора. Если он не получит такой сигнал, система не запустится.

    Бывает так что на блоке питания не хватает необходимых разъёмов. Выйти из положения можно, применяя различные переходники и разветвители:


    Расчёт мощности

    Мощности на выходе по каждой линии обычно написаны на наклейке блока питания и расчитываются по формуле:

    Ватты (Вт) = Вольты (В) х Амперы (А)

    Тем самым сложив все мощности по каждой линии получим общую мощность блока питания.


    Однако, часто выходная мощность не соответствует заявленной. Лучше брать немного более мощный блок, чтобы компенсировать возможную нехватку мощности.

    Предпочтение думаю лучше отдавать проверенным брендам, однако не факт что блок будет качественным. Проверить можно только одним способом - вскрыть его. Должны быть массивные радиаторы, входные конденсаторы большой ёмкости, качественный трансформатор, должны быть распаяны все детали


    Основные характеристики блоков питания

    Блоки питания не могут работать без нагрузки. При его проверки, к нему необходимо подключить что-нибудь. Иначе он может сгореть или, при наличии защиты, он отключится.

    Запустить его можно закорачиванием двух проводков на основном разъёме ATX, зелёного и любого чёрного.


    Характеристики:

  • Наработка на отказ. Примерно должна быть более 100000 часов
  • Входной диапазон напряжений (американский (120В) или европейский (220В)). Возможно присутствие переключателя режимов работы или автоматическое определение.
  • Время отключения блока питания при кратковременном отключении электричества. 15-30мс является стандартом, но чем больше тем лучше. Тем самым при пропадании электричества, у Вас система останется в рабочем состоянии, а не уйдёт в перезагрузку
  • Стабилизация напряжения на выходах при включении устройства (привода, жёсткого диска). Так как на неиспользуемое устройство подаётся пониженное напряжение
  • Отключение линии при превышении на ней напряжения к устройству
  • Максимальная нагрузка на линию. По этому показателю можно определить сколько устройств можно подключить к одной линии.
  • Стабилизация напряжения на выводах линий при изменении входящего напряжения.
  • Не секрет, что от правильного выбора блока питания (далее БП), его конструкции и качества сборки зависит работа устройства, на которое он нагружен. Здесь я постараюсь рассказать об основных моментах выбора, расчета, конструирования и применения блоков питания.

    1. Выбор блока питания

    Первым делом следует четко уяснить, что именно будет подключено к БП. Главным образом нас интересует ток нагрузки. Это будет основным пунктом ТЗ. По этому параметру будет подобрана схема и элементная база. Приведу примеры нагрузок и их средние потребляемые токи

    1. Световые эффекты на светодиодах (20-1000мА)

    2. Световые эффекты на миниатюрных лампах накаливания (200мА-2А)

    3. Световые эффекты на мощных лампах (до 1000А)

    4. Миниатюрные полупроводниковые радиоприемники (100-500мА)

    5. Портативная аудиотехника (100мА-1А)

    6. Автомобильные магнитолы (до 20А)

    7. Автомобильные УМЗЧ (по линии 12В до 200А)

    8. Стационарные полупроводниковые УМЗЧ (при выходной мощности не выше 1кВт до 40А)

    9. Ламповые УМЗЧ (10мА-1А – анод, 200мА-8А – накал)

    10. Ламповые КВ трансиверы [выходной каскад в классе С характеризуется наибольшим КПД] (при мощности передатчика до 1кВт, до 5А – анод, до 10А – накал)

    11. Полупроводниковые КВ трансиверы, Си-Би (при мощности передатчика до 100Вт, 1 – 5А)

    12. Ламповые УКВ радиостанции (при мощности передатчика до 50Вт, до 1А – анод, до 3А - накал)

    13. Полупроводниковые УКВ радиостанции (до 5А)

    14. Полупроводниковые телевизоры (до 5А)

    15. Вычислительная техника, оргтехника, сетевые устройства [концентраторы LAN, точки доступа, модемы, роутеры] (500мА - 30А)

    16. Зарядные устройства для АКБ (до 10А)

    17. Управляющие блоки бытовой техники (до 1А)

    2. Правила безопасности

    Не будем забывать, что БП это самый высоковольтный узел в любом устройстве (за исключением разве что телевизора). При чем опасность представляет не только промышленная электросеть (220В). Напряжение в анодных цепях ламповой аппаратуры может достигать десятков и даже сотен (в рентгеновских установках) киловольт (тысяч вольт). Поэтому все высоковольтные участки (включая общий провод) должны быть изолированы от корпуса. Это хорошо знает тот, кто поставив ногу на системный блок трогал батарею. Электрический ток может быть опасен не только для человека и животных, но и для самого устройства. Имеются ввиду пробои и короткие замыкания. Эти явления не только выводят из строя радиокомпоненты, но и весьма пожароопасны. Мне попадались некоторые изолирующие элементы конструкций, которые в следствии подачи высокого напряжения были пробиты и выгорели до угля при чем выгорели не полностью, а каналом. Уголь проводит ток и создает таким образом короткое замыкание (далее КЗ) на корпус. При чем внешне это не видно. Поэтому между двумя проводами, припаянными к плате, должно быть расстояние из расчета примерно 2мм на вольт. Если речь идет о смертельно опасных напряжениях, то в корпусе должны быть предусмотрены микропереключатели, которые автоматически обесточивают прибор при удалении стенки с опасного участка конструкции. Элементы конструкции, которые в процессе работы сильно нагреваются (радиаторы, мощные полупроводниковые и электровакуумные приборы, резисторы мощностью свыше 2Вт) должны быть вынесены с платы (наилучший вариант) или хотя бы приподняты над ней. Так же не допускается касание корпусов разогревающихся радиоэлементов, за исключением тех случаев, когда второй элемент является датчиком температуры первого. Такие элементы не разрешается заливать эпоксидной смолой и другими компаундами. Более того, должен быть обеспечен приток воздуха к участкам с большой рассеиваемой мощностью, а при необходимости и принудительное охлаждение (вплоть до испарительного). Так. Страху нагнал, теперь о работе.

    3. Законы Ома и Кирхгофа были и будут основой разработки любого электронного устройства.

    3.1. Закон Ома для участка цепи

    Сила тока на участке цепи прямо пропорциональна напряжению, приложенному к участку и обратно пропорциональна сопротивлению участка. На этом принципе основана работа всех ограничительных, гасящих и балластных резисторов.

    Эта формула хороша тем, что под "U" можно подразумевать как напряжение на нагрузке, так и напряжение на участке цепи, последовательно соединенном с нагрузкой. Например у нас есть лампочка на 12В/20Вт и источник 17В, к которому нам нужно подключить эту лампочку. Нам нужен резистор, который понизит 17В до 12.


    Рис.1

    Итак, мы знаем что при последовательном соединении элементов напряжения на них могут отличаться, но ток всегда одинаковый на любом участке цепи. Вычислим ток, потребляемый лампочкой:

    Значит, через резистор протекает такой же ток. В качестве напряжения берем падение напряжения на гасящем резисторе, ведь это действительно то самое напряжение, которое действует на этом резисторе ()

    Из приведенного примера совершенно очевидно, что . Причем это относится не только к резисторам, но и, например, к динамикам, если мы вычисляем какое напряжение нужно подвести к динамику с заданной мощностью и сопротивлением, чтобы он развил эту мощность.

    Прежде, чем мы перейдем к нему, нужно четко уяснить физический смысл внутреннего и выходного сопротивлений. Предположим, у нас есть некоторый источник ЭДС. Так вот, внутреннее (выходное) сопротивление это мнимый резистор, включенный последовательно с ним.


    Рис.2

    Естественно, фактически в источниках тока таких резисторов нет, но у генераторов есть сопротивление обмоток, у розеток – сопротивление проводки, у АКБ – сопротивление электролита и электродов и т.д. Это сопротивление при подключении нагрузки ведет себя именно как последовательно включенный резистор.

    Где: ε – ЭДС
    I – сила тока
    R – сопротивление нагрузки
    r – внутреннее сопротивление источника

    Из формулы видно, что с возрастанием внутреннего сопротивления уменьшается мощность вследствие просадки во внутреннем сопротивлении. Это видно и из закона Ома для участка цепи.

    3.3 Правило Кирхгофа нас будет интересовать только одно: сумма токов, входящих в цепь равна току (сумме токов), выходящему из нее. Т.е. какой бы не была нагрузка и из скольки бы ветвей она не состояла, сила тока в одном из питающих проводов будет равна силе тока во втором проводе. Собственно, этот вывод вполне очевиден, если мы говорим о замкнутой цепи.

    С законами протекания тока вроде все ясно. Посмотрим как это выглядит в реальном «железе».

    4. Начинка

    ВсеБП во многом схожи по схеме и элементной базе. Это вызвано тем, что по большому счету они выполняют одни и те же функции: изменение напряжения (всегда), выпрямление (чаще всего), стабилизация (часто), защита (часто). Теперь рассмотрим способы реализации этих функций.

    4.1. Изменение напряжения чаще всего реализуется при помощи различных трансформаторов. Этот вариант наиболее надежен и безопасен. Существуют так же безтрансформаторные БП. В них для понижения напряжения используется емкостное сопротивление конденсатора, включенного последовательно между источником тока и нагрузкой. Выходное напряжение таких БП полностью зависит от тока нагрузки и ее наличия. Даже при кратковременном отключении нагрузки такие БП выходят из строя. Кроме того, они могут только понижать напряжение. Поэтому я не рекомендую такие БП для питания РЭА. Итак, остановимся на трансформаторах. В линейных БП используются трансформаторы на 50Гц (частота промышленной сети). Трансформатор состоит из сердечника, первичной обмотки и нескольких вторичных обмоток. Переменный ток, поступая на первичную обмотку создает в сердечнике магнитный поток. Этот поток, как магнит, наводит ЭДС во вторичных обмотках. Напряжение на вторичных обмотках определяется количеством витков. Отношение количества витков (напряжения) вторичной обмотки к количеству витков (напряжению) первичной обмотки называется коэффициентом трансформации (η). Если η>1 трансформатор называют повышающим, в противном случае – понижающим. Есть трансформаторы у которых η=1. Такие трансформаторы не меняют напряжение и служат только для гальванической развязки цепей (цепи считаются гальванически развязанными, если у них нет непосредственного общего электрического контакта. Хотя токи, протекающие через них, могут действовать друг на друга. Например « Blue Tooth » или лампочка и поднесенная к ней солнечная батарея или ротор и статор электродвигателя или неоновая лампа, поднесенная к антенне передатчика ). Поэтому использовать их в БП нет смысла. Импульсные трансформаторы работают по такому же принципу с той лишь разницей, что на них не подается напряжение непосредственно из розетки. Сначала оно преобразуется в импульсы более высокой частоты (обычно 15-20кГц) и уже эти импульсы подаются на первичную обмотку трансформатора. Частота следования этих импульсов называется частотой преобразования импульсного БП. С возрастанием частоты увеличивается индуктивное сопротивление катушки, поэтому обмотки импульсных трансформаторов содержат меньшее количество витков по сравнению с линейными. Это делает их более компактными и легкими. Однако импульсные БП характеризуются бОльшим уровнем помех, худшим тепловым режимом и схемотехнически более сложны, следовательно менее надежны.

    4.2. Выпрямление подразумевает преобразование переменного (импульсного) тока в постоянный. Этот процесс заключается в разложении положительных и отрицательных полуволн на соответствующие полюса. Есть достаточно много схем, позволяющих это сделать. Рассмотрим те, которые наиболее часто используются.

    4.2.1. Четвертьмост


    Рис.3

    Самая простая схема однополупериодного выпрямителя. Работает следующим образом. Положительная полуволна проходит через диод и заряжает С1. Отрицательная полуволна блокируется диодом и цепь оказывается как бы оборванной. В этом случае нагрузка питается за счет разрядки конденсатора. Очевидно, что для работы на 50Гц емкость С1 должна быть сравнительно велика, чтобы обеспечивать низкий уровень пульсаций. Поэтому схема применяется в основном в импульсных БП ввиду более высокой рабочей частоты.

    4.2.2 Полумост (удвоитель Латура-Делона-Гренашера)


    Рис.4

    Принцип работы похож на четвертьмост, только здесь они соединены как бы последовательно. Положительная полуволна проходит через VD1 и заряжает С1. На отрицательной полуволне VD1 закрывается и С1 начинает разряжаться, а отрицательная полуволна проходит через VD2. Таким образом между катодом VD1 и анодом VD2 появляется напряжение, в 2 раза превосходящее напряжение вторичной обмотки трансформатора (рис.4а). Этот принцип можно использовать для построения расщепленного БП. Так называются БП, выдающие 2 одинаковых по модулю, но противоположных по знаку напряжения (рис.4б). Однако не следует забывать, что это 2 соединенных последовательно четвертьмоста и емкости конденсаторов должны быть достаточно велики (из расчета, как минимум, 1000мкФ на 1А потребляемого тока).

    4.2.3. Полный мост

    Самая распространенная схема выпрямителя имеет наилучшие нагрузочные характеристики при минимальном уровне пульсаций и может применяться как в однополярных (рис.5а), так и в расщепленных БП (рис.5б).


    Рис.5

    На рис.5в,г показана работа мостового выпрямителя.

    Как уже говорилось, различные схемы выпрямителей характеризуют разные значения коэффициента пульсаций. Точный расчет выпрямителя содержит громоздкие вычисления и на практике редко бывает необходим, поэтому ограничимся ориентировочным расчетом, который можно выполнить по таблице

    где: U 2 – напряжение вторичной обмотки
    I 2 – предельно допустимый ток вторичной обмотки
    U обр – Предельно допустимое обратное напряжение диодов (кенотронов, тиристоров, газотронов, игнитронов)
    I пр.макс – Предельно допустимый прямой ток диодов (кенотронов, тиристоров, газотронов, игнитронов)
    q 0 – коэффициент пульсаций на выходе
    U 0 – Выводное напряжение выпрямителя
    I 0 – максимальный ток нагрузки

    Емкость сглаживающего конденсатора можно вычислить по формуле


    где: q – коэффициент пульсаций
    m – фазность
    f – частота пульсаций
    R н – сопротивление нагрузки ()
    R ф – сопротивление резистора фильтра (это формула для резистивно-емкостных фильтров, но в качестве резистора можно взять выходное сопротивление выпрямителя [внутреннее сопротивление трансформатора+импеданс вентилей])

    4.3. Фильтрация

    Пульсации вносят помехи в работу аппарата, который питается от БП. Кроме того, они делают невозможной работу стабилизаторов ввиду того, что в интервалах между полуволнами (абсолютная синусоида) напряжение падает практически до нуля. Рассмотрим некоторые виды сглаживающих фильтров.

    4.3.1. Пассивные фильтры могут быть резистивно-емкостными индуктивно-емкостными и комбинированными.


    Рис.6

    Резистивно-емкостные фильтры (рис.6) характеризуются сравнительно большим падением напряжения. Это связано с применением в них резистора. Поэтому для работы с токами более 500мА такие фильтры не подходят ввиду больших потерь и рассеиваемой мощности. Резистор рассчитывается следующим образом

    где: U вып – выходное напряжение выпрямителя
    U п – напряжение питания нагрузки
    I н – ток нагрузки


    Рис.7

    Индуктивно-емкостные фильтры характеризуются сравнительно высокой сглаживающей способностью, но уступают другим по массогабаритным параметрам. Основная идея индуктивно – емкостного фильтра в соотношении реактивных сопротивлений его компонентов , т.е. фильтр должен обладать хорошей добротностью. Сам фильтр рассчитывается по следующей формуле

    Где: q – коэффициент сглаживания
    m – фазность
    f – частота
    - индуктивность дросселя
    – емкость конденсатора.

    В любительских условиях вместо дросселя можно использовать первичную обмотку трансформатора (ни того, от которого все питается), а вторичную замкнуть.

    4.3.2. Активные фильтры применяются в тех случаях, когда пассивные фильтры не годятся по массогабаритным или температурным параметрам. Дело в том, что, как уже говорилось, чем больше ток нагрузки, тем больше емкость сглаживающих конденсаторов. На практике это вытекает в необходимость применения громоздких электролитических конденсаторов. В активном фильтре используется транзистор в схеме эмиттерного повторителя (каскад с общим коллектором), поэтому сигнал на эмиттере практически повторяет сигнал на базе (рис.8)


    Рис.8

    Цепь R1C1 рассчитывается как резистивно – емкостной фильтр, только в качестве потребляемого тока берется ток в цепи базы

    Однако, как видно из формулы, режим фильтра (в том числе и коэффициент сглаживания) будет зависеть от потребляемого тока, поэтому его лучше зафиксировать (рис.9)


    Рис.9

    Схема работает при условии, что , при чем выходное напряжение будет составлять примерно 0,98U б в следствии просадки напряжения в повторителе. За сопротивление нагрузки принимаем R2.

    4.3.3 Помехозащитные фильтры

    Надо сказать, что радиопомехи могут проникать не только из сети в прибор, но и из прибора в сеть. Поэтому оба направления следует защищать от помех. Особенно это касается импульсных БП. Как правило, это сводится к подключению конденсаторов небольшой емкости (0,01 – 1,0мкФ) параллельно цепи, как это показано на рис.10.



    Рис.10

    Как и в случае со сглаживающими фильтрами, помехозащитные фильтры работают при условии, что емкостное сопротивление конденсаторов на частоте возникновения помехи много меньше сопротивления нагрузки.

    Возможно, что помеха возникает ни от спонтанного перепада тока в сети или прибора, а от постоянной «вибрации». Это относится, например, к импульсным БП или передатчикам в телеграфном режиме. В этом случае может потребоваться еще и индукционная развязка (рис.11).


    Рис.11

    Однако конденсаторы должны быть подобраны так, чтобы не возникал резонанс в обмотках дросселей и трансформаторов.

    4.4. Стабилизация

    Существует целый ряд устройств, блоков и узлов, которые могут работать только от стабилизированных источников тока. Например генераторы, в которых от напряжения зависит скорость зарядки/разрядки конденсаторов в цепях ОС и, следовательно, частота и форма генерируемого сигнала. Поэтому в БП чаще всего стабилизируют именно выходное напряжение, в то время как ток стабилизируют чаще всего в зарядных устройствах и ИБП, да и то не всегда. Существует достаточно много способов стабилизации напряжения, но на практике чаще всего встречаются параметрические стабилизаторы в том или ином виде. Рассмотрим их работу.

    4.4.1. Простейший стабилизатор состоит из стабилитрона и ограничительного резистора (рис.12).


    Рис.12

    Принцип работы такого стабилизатора основан на изменении падения напряжения в ограничительном резисторе в зависимости от тока. При чем вся схема работает при условии, что
    Действительно, если ток, протекающий через нагрузку будет превосходить ток стабилизации, то стабилитрон не сможет обеспечить должный перепад по правилу параллельного соединения

    Как видно из формулы, наибольшее влияние на общее сопротивление цепи оказывает наименьшее сопротивление. Дело в том, что с увеличением обратного напряжения растет его обратный ток, поэтому он и удерживает напряжение в определенных рамках (закон Ома для участка цепи).

    4.4.2. Эмиттерный повторитель

    Тогда что делать, если потребляемый ток должен превосходить ток стабилизации стабилитрона?


    Рис.13

    На помощь приходит наш старый добрый эмиттерный повторитель прирожденный усилитель по току. В конце концов что такое падение напряжения на 2% по сравнению с приращением тока на 1000%!? Внедряем (рис.13)! Ток вырос примерно в h 21 раз по сравнению со стабилизатором на стабилитроне. На эмиттере буде примерно 0,98U Б

    4.4.3. Наращивание напряжения стабилизации

    Проблема решена, а как быть если требуется стабилизировать напряжение, скажем, 60В? В этом случае можно соединять стабилитроны последовательно. Таким образом 60В это 6 стабилитронов по 10В или 5 по 12В (рис.14).


    Рис.14

    Как и для любой последовательной цепи, здесь работает правило

    где: - общее напряжение стабилизации цепочки
    n – количество стабилитронов в цепи
    - напряжение стабилизации каждого стабилитрона.

    При чем напряжение стабилизации у стабилитронов может отличаться, но ток стабилизации должен быть одинаковым.

    4.4.4. Наращивание тока нагрузки

    Таким образом решается вопрос с высоким напряжением. Если требуется повысить нагрузочную способность (предельно допустимый ток нагрузки) используются каскады эмиттерных повторителей, образующие составной транзистор (рис.15).


    Рис.15

    Параметрический стабилизатор и эмиттерный повторитель рассчитываются так же, как и в предыдущих схемах. R2 включен в схему для стока потенциалов с базы VT2 когда VT1 закрыт, однако должно выполняться условие , где Z VT 1 – импеданс VT1 в открытом состоянии.

    4.4.5. Регулировка выходного напряжения

    В ряде случаев бывает необходимо подстраивать или регулировать выходное напряжение стабилизатора (рис.16).


    Рис.16

    В этой схеме нагрузкой считается R2, и ток через стабилитрон должен превосходить ток через R2. Следует помнить, что если напряжение снижено до «0», то на переходе коллектор-база действует полное входное напряжение. Если заявленный режим транзистора не достигает этого напряжения, то транзистор неизбежно выйдет из строя. Так же следует отметить, что на выходе стабилизаторов с эмиттерными повторителями очень опасны конденсаторы большой емкости. Дело в том, что в этом случае транзистор оказывается зажатым между двумя большими емкостями. Если разрядить выходной конденсатор, то сглаживающий конденсатор разрядится через транзистор и транзистор выйдет из строя от перегрузки по току. Если разрядить сглаживающий конденсатор, то на эмиттере напряжение станет выше, чем на коллекторе, что так же неизбежно приведет к пробою транзистора.

    4.4.6 Стабилизация тока применяется довольно редко. Например зарядных устройствах для АКБ. Самым простым и надежным способом стабилизировать ток является использование каскада с общей базой и светодиодом в качестве стабилизирующего элемента.


    Рис.17

    Принцип работы такой схемы весьма прост: при снижении тока через нагрузку уменьшается падение напряжения в каскаде. Таким образом на нагрузке повышается напряжение, а следовательно (по закону Ома) и ток. А вырасти выше нужного предела току не позволяет зафиксированный светодиодом режим базы транзистора, т.е. коэффициент усиления не позволяет выдать такой ток на выходе, ибо транзистор работает в режиме насыщения.

    где: R1 – сопротивление резистора R1
    U пр.св – прямое напряжение на светодиоде
    U БЭ.нас – напряжение между эмиттером и базой в режиме насыщения
    I H – необходимый ток нагрузки.

    где: R2 – сопротивление резистора R2
    Е – входное напряжение стабилизатора
    U пр.св – максимальное прямое напряжение светодиода
    I пр. max – максимальный прямой ток светодиода.

    Импульсные БП будут рассмотрены во второй части статьи.

    1. Блок питания компьютера
    2. Мощность
    3. Активный или пассивный PFC?
    4. Охлаждение блока питания
    5. Разъемы и кабели
    6. Бренды и производители
    7. Из истории
    8. Перспективы развития

    Блок питания компьютера

    Правильно выбрать блок питания для компьютера - иногда может быть не так просто, как кажется. От этого выбора зависит стабильность, а также срок службы всех используемых компонентов ПК, и подходить вопросу выбора блока питания - нужно серьезно. В данном обзоре, мы попытаемся рассмотреть основные моменты, которые помогут сделать правильный выбор.

    Мощность

    На выходе блока питания присутствуют следующие постоянные напряжения: +5 V, +12 V (также +3.3 V), и - вспомогательные (минус 12 V и + 5 V в простое). Основной же нагрузкой сейчас «принято» загружать линию +12 V.

    Выходная мощность (W - Ватт) рассчитывается по простой формуле: она равна произведению U на J, где U – напряжение (в Вольтах), J – сила тока (в Амперах). Напряжения – постоянны, поэтому, чем больше мощность, тем больше должна быть сила тока по линиям.

    Но, оказывается, тут тоже не все просто. При сильной нагрузке на комбинированную линию +3.3 / +5, уменьшиться может мощность по линии +12. Пример - маркировка блока питания бюджетного бренда Cooler Master (модели RS-500-PSAP-J3):

    Максимальная суммарная мощность по линиям +3.3 и +5 равна 130W (что – указано на упаковке), ну а максимальная мощность по «наиболее важной» линии +12V - равна 360W.

    Но и это – не все. Обратим внимание на надпись ниже:

    3.3V и +5V и +12V суммарная мощность не должна превышать 427.9 W. Как бы, теоретически (глядя в «таблицу»), мы «видим» 490W (360 плюс 130), а здесь - всего лишь 427.9.

    Что это даст нам на практике: если нагрузка по линии +3.3V и 5V будет в сумме, скажем 60W, то отняв от приводимой производителем мощности 427.9, т.е. 427.9 – 60, получаем 367.9W. Мы получим только 360 Ватт по линии +12V. От которой идет как раз «основное потребление»: ток на процессор, видеокарту.

    Автоматический расчет мощности

    Для расчета мощности блоков питания, можно воспользоваться калькулятором в браузере: http://www.extreme.outervision.com/psucalculatorlite.jsp. Хотя он - на английском языке, разобраться можно. Таких сервисов, в интернете достаточно много.

    В общем, здесь можно выбрать почти что все, что нужно, включая конкретный тип CPU, формат материнской платы (micro-ATX или ATX), число планок памяти, винчестеров, вентиляторов… Для расчета, надо жать на прямоугольную кнопку «Calculate». Сервис выдаcт: как рекомендуемое, так и минимально возможное значение мощности (в Ваттах) для вашей системы.

    Однако, по опыту, можно считать: офисный компьютер (с двух-ядерным CPU), может довольствоваться блоком питания на 300W. Для домашнего (игрового, с дискретной видеокартой) – подходит БП 450 - 500W, ну а для мощных игровых ПК с «верхней» (топовой) картой (либо – двумя, в режиме Crossfire или SLI) - Total Power (суммарная мощность) начинается от 600 - 700W.

    Центральный процессор, даже при максимально возможной нагрузке, потребляет 100 - 180W (исключение – 6-ядерные AMD), видеокарта дискретная – от 90 до 340W, сама материнская плата - 25-30W (планка памяти - 5-7W), жесткий диск 15-20W. Учитывайте при этом, что основная нагрузка (процессор и видеокарта) ложится на линию «12V». Ну и, желательно добавить запас по мощности (10-20%).

    КПД – коэффициент полезного действия

    Немаловажным критерием будет и КПД блока питания. Коэффициент полезного действия (КПД) - отношение полезной мощности, выдаваемой блоком питания, к потребляемой им от сети. Если схема блока питания ПКсодержала бы лишь трансформатор, его КПД был бы около 100%.

    Рассмотрим пример, когда блок питания (с известным КПД - 80%) обеспечивает на выходе мощность в 400W. Если это число (400) разделить на 80% - получим 500W. А блок питания с теми же характеристиками, но с меньшим КПД (70%), будет потреблять уже 570W.

    Но – не надо воспринимать эти цифры «всерьез». Блок питания большую часть времени – нагружен не полностью, например, это значение может быть 200W (потреблять от сети компьютер будет меньше).

    Существует организация, в функции которой входит тест блоков питания на соответствие уровню заявленного стандарта КПД. Сертификация 80 Plus, при этом, проводится только для сетей на 115 Вольт (распространенных в США), начиная же с «класса» 80 Plus Bronze, все блоки тестируются для использования в 220В-электросети. Например, если сертификация пройдена в классе 80 Plus Bronze, КПД блока питания составляет 85% при «половинной» загрузке по мощности, и 81% - при заявленной мощности.

    Наличие логотипа на блоке питания говорит, что товар соответствует уровню сертификации.

    Плюсы высокого КПД: меньше энергии отводится «в виде тепла», и система охлаждения, соответственно, будет менее шумной. Во-вторых – очевидна экономия электричества (хотя и, не очень большая). Качество у «сертифицированных» БП, как правило, высокое.

    Активный или пассивный PFC?

    Power Factor Correction (PFC) – коррекция коэффициента мощности. Power Factor - отношение активной мощности к полной (активной плюс реактивной).

    Нагрузкой же, реактивная мощность не потребляется – она на 100% отдается обратно в сеть, на следующем полупериоде. Однако, с ростом реактивной мощности, растет максимальное (за период) значение силы тока.

    Слишком большая сила тока в проводах 220В – хорошо ли это? Наверное, нет. Поэтому, с реактивной мощностью по возможности борются (особенно это актуально для действительно мощных устройств, «переходящих» предел в 300-400 Ватт).

    PFC – может быть пассивным или активным.

    Преимущества активного метода:

    Обеспечивается близкий к идеальному значению Power Factor (коэффициент мощности), вплоть до значения, близкого к 1. При PF=1, сила тока в проводе 220В не превысит значение «мощность делить на 220» (в случае меньших значений PF, сила тока – всегда несколько больше).

    Недостатки активного PFC:

    Повышается сложность – снижается общая надежность блока питания. Самой системе активного PFC - требуется охлаждение. Кроме того, не рекомендуют использовать системы активной коррекции с автовольтажем совместно с источниками ИБП (UPS).

    Преимущества пассивной PFC:

    Отсутствуют недостатки активного метода.

    Недостатки:

    Система – малоэффективна при больших значениях мощности.

    Что именно выбрать? В любом случае, приобретая БП меньшей мощности (до 400-450W), в нем чаще всего вы обнаружите PFC пассивной системы, а более мощные блоки, от 600 W – чаще встречаются с активной коррекцией.

    Охлаждение блока питания

    Наличие в любом блоке питания вентилятора для охлаждения - считается нормой. Диаметр вентилятора – может быть равным 120 мм, встречается вариант на 135 мм и, наконец, 140 мм.

    Системный блок предусматривает установку БП вверху корпуса – тогда, выбирайте любую модель с горизонтально расположенным вентилятором. Больше диаметр – меньше шум (c одинаковой мощностью охлаждения).

    Скорость вращения должна меняться в зависимости от внутренней температуры. Когда БП не перегревается – зачем нужно крутить «вентиль» на всех оборотах, и досаждать пользователю шумом? Существуют модели БП, полностью останавливающие свой вентилятор при потребляемой мощности менее 1/3 расчетной. Что - удобно.

    Главное в системе охлаждения БП – это ее тишина (или – полное отсутствие вентилятора, такое тоже встречается). С другой стороны, охлаждение нужно затем, чтобы не допустить перегрева деталей (высокая мощность, в любом случае, влечет тепловыделение). На больших мощностях, без вентилятора – не обойтись.

    Примечание: на фото – результат моддинга (удаление стандартной решетки-прорези, установка вентилятора Noktua и гриля 120 мм).

    Разъемы и кабели

    При покупке и выборе, обращайте внимание на количество доступных разъемов и длину проводов, идущих от блока питания. В зависимости от геометрии корпуса, нужно выбирать БП с достаточным по длине жгутом кабеля. Для стандартных корпусов ATX, достаточно будет жгута 40-45 см.

    Блок питания, работающий в домашнем и офисном компьютере, имеет разъемы:

    Это - 24-х контактный разъем питания материнской платы ПК. Обычно здесь – раздельно 20 и 4 контакта, но бывает – и монолитный, 24-контактный.

    Разъем питания процессора. Обычно он 4-х контактный, и только для очень мощных процессоров используют 8 контактов. Правильно выбрать блок питания для компьютера можно, ориентируясь на соответствующий разъем самой материнской платы.

    Разъем для питания видеокарты – выглядит аналогично, и отличается тем, что он - 6-ти либо 8-ми контактный.

    Разъемы (коннекторы) для питания SATA-устройств (жестких дисков, оптических приводов), четырех контактные Molex (для IDE), и для включения FDD (или кард-ридера) – знакомы большинству пользователей:

    Примечание: количество всех дополнительных разъемов (SATA, MOLEX, FDD) должно быть достаточным для подключения устройств, размещаемых внутри системного блока.

    Монтаж – демонтаж

    Для демонтажа старого блока питания, отключите его провод 220 Вольт. Затем, необходимо выждать 2-3 минуты, и только затем приступать к работе. Внимание! Несоблюдение данного требования может повлечь электротравму.

    Блок питания в любом ПК крепится к задней стенке на 4-х винтах (саморезах). Откручивать их можно, только отключив все внутренние разъемы и штекеры блока питания (2 разъема материнской платы, видеокарты, коннекторы дополнительных устройств).

    Подключить блок питания к компьютеру можно в обратном порядке: сначала – монтируем в корпус, закрепляя винтами, затем – подключаем разъемы.

    Примечание: при манипуляциях с блоком питания, кулер процессора может мешать. Если есть возможность его демонтировать - воспользуйтесь этим (поставите на место – потом, перед включением).

    Включение компьютера с новым БП

    Подав питание 220 Вольт на новый БП, не нужно сразу включать компьютер. Подождите секунд 10-15 сначала: вы будете слушать, не происходит ли что-либо «неординарное». Если слышим писк, звон дросселей – идем и меняем блок питания по гарантии. Если же вы слышите периодически повторяющийся «металлический» щелчок – не включайте компьютер с таким блоком питания.

    Если в дежурном режиме, блок питания «щелкает» - это работает система защиты. Отключите такой блок питания, отсоедините его разъемы (коннекторы). Можно попробовать собрать то же самое еще раз - если проблема повторяется, несем блок питания в сервисный центр (возможно, неисправен сам блок).

    Компьютер с исправным БП включается практически сразу же, при нажатии кнопки «Power» ATX-корпуса. Должно появиться изображение на мониторе – теперь вы можете продолжить работу, но уже - с новым блоком питания.

    Модульные кабели и разъемы

    Многие более мощные модели блоков питания сейчас используют так называемое «модульное» подключение. Добавление внутренних кабелей с соответствующими ответными разъемами – происходит по необходимости. Это удобно, потому, что в корпусе компьютера уже не надо держать лишние (неиспользуемые) провода, к тому же, так - меньше путаницы. А отсутствие лишних проводов, улучшает также циркуляцию горячего воздуха. В модульных блоках питания, «несъемными» делают только шнуры с разъемом для материнской платы/процессора.

    Бренды и производители

    Все фирмы (производители блоков питания для компьютера) – принадлежат одной из 3-х основных групп:

    1. Производят полностью свою продукцию – такие бренды, как Hipro, FSP, Enermax, Delta, также HEC, Seasonic.
    2. Производят продукцию, перекладывая часть процесса изготовления на другие компании - Corsair, Silverstone, Antec, Power&Cooling и Zalman.
    3. Перепродают готовые блоки под собственной маркой (некоторые – производят «отбор», некоторые - нет): Chiftec, Gigabyte, Cooler Master, OCZ, Thermaltake.

    Каждый бренд, приведенный выше, смело можно рекомендовать. В интернете, к тому же, приводится много обзоров и тестов для «фирменных» блоков питания, по которым можно ориентироваться пользователю.

    Перед покупкой БП, его стоит взвесить (достаточно и подержать в руке). Это позволит более-менее понять, что у него внутри. Конечно, способ это - неточный, однако он позволяет сразу «отмести» явно «дешевый» БП.

    Масса блока питания зависит от качества стали, габаритов вентилятора, а (главное): количества дросселей и веса радиаторов внутри. Если в БП не хватает каких-то катушек индуктивности (или, допустим, конденсаторы - уменьшенной емкости), это говорит об «удешевлении» электрической схемы: БП будет весить 700-900 гр. Хороший БП (450-500W) весит обычно от 900 гр. до 1,4 кг.

    Из истории

    На рынке персональных компьютеров, то есть не только IBM-совместимых, а – в более общем смысле «компьютеров», на стандартизацию компонентов (БП, материнской платы) изначально пошла компания IBM. Остальные затем стали это «копировать». Все известные форм-факторы для блоков питания IBM-совместимых ПК, основаны на какой-либо из моделей БП: PC/XT, PC/AT, и Model 30 PS/2. Все совместимые ПК, так или иначе, могли использовать один из трех оригинальных стандартов, разработанных IBM. Эти стандарты были популярны вплоть до 1996 г., и даже позднее – современный стандарт ATX восходит к физической компоновке PS/2 Model 30.

    Новый форм-фактор, то есть известный нам ATX, определила в 1995 г. компания Intel (тогда - партнер IBM), представив стандарт для платы и блока питания. Новый стандарт обрел популярность с 1996 г., и производители постепенно начали отходить от устаревшего стандарта AT. ATX и некоторые «ответвления» стандарта, которые за ним последовали, используют отличные от форм-фактора AT разъемы мат. платы (не только с дополнительными напряжениями, но и сигналами, которые позволяют обеспечивать большую мощность и дополнительные возможности).

    Все IBM-овские стандарты предусматривали физически один и тот же разъем, подающий питание на материнскую плату. Для включения и выключения, чтобы подать питание на компьютер, использовался тумблер (или кнопка), размыкающий провод с напряжением 220 Вольт. Что было не очень удобно (особенно при разборе/ремонте ПК). Поэтому, появился новый стандарт, «не допускающий» напряжение более 12 Вольт внутри системного блока (внутри корпуса).

    Необходимо сказать, что сама схема питания (принцип ее построения), начиная от первых PC XT, значительных изменений не получила. Принцип преобразования энергии, используемый в компьютерных БП, называется «импульсным» (из переменного напряжения 220 Вольт делается «постоянное», затем, оно преобразуется, понижается до более низких значений импульсным методом). Первые блоки питания для персональных компьютеров имели мощность 60 W (XT), или, скажем, 100-120 W (AT 286). Просто, тогда компьютер предусматривал установку: 1-2 дисководов, одного винчестера (да и сам процессор - «потреблял» очень мало).

    Перспективы развития

    800 Ватт, 900 Ватт, 1000 Ватт… Блоком питания для ПК, отдающим в нагрузку один Киловатт энергии - никого не удивить. Конечно, цена значительно отличается (от «стандартных» коробок на 450-500 W), однако, такой блок питания обеспечивает достаточный уровень надежности (и – невысокий уровень шума) даже при полной загрузке! Ну, просто чудо.

    Если же посчитать, сколько энергии такой компьютер будет потреблять от розетки – получится, что это ни что иное, как эквивалент постоянно включенного на полную мощность утюга. Хорошего такого, по мощности - выше среднего, тяжеленького…

    Последнее время, с переходом на новые техпроцессы производства «главных» микросхем для компьютера (центрального процессора, модуля 3-D), движение наметилось как раз «обратное» – то есть, снижение общей мощности при сохранении того же уровня производительности. Два года назад, средний 4-ядерный «проц» потреблял не менее 90 W, сейчас - уже 65 («новый», при этом – быстрее). В любом случае (как 2 года назад, так и сейчас), выбор – за пользователем.